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ECS 20 – Fall 2021 – Phillip Rogaway                              Logic I  
 
Today:   Logic 
Propositional logic: Boolean values, digital circuits, logic-design problems, 
satisfiable and tautological formulas, provability 
 
Wikipedia page on 
Propositional calculus: https://en.wikipedia.org/wiki/Propositional_calculus 
and on Boolean algebra https://en.wikipedia.org/wiki/Boolean_algebra  
 
 
Propositional Logic   =  Propositional Calculus 
              = Sentential Logic = Sentential Calculus ≈ Boolean algebra 
 
Universe of two points 𝔹𝔹 = {0,1}     or,    alternatively,    
                                     𝔹𝔹 = {F, T}  or     𝔹𝔹 = {False, True}   
 
That is, I will interchangeably use   0, F, False    and 1, T, True.  I have even 
seen examples where the Boolean values are regarded as {-1, 1}. 
(The font for 𝔹𝔹 is blackboard bold: \mathbb{…} in LaTeX) 
 
The 𝔹𝔹 stands for Boolean, named after George Boole, a 19th century 
mathematician. 
 
It is wonderful thing having a universe of only two points—a way simpler 
universe than the natural numbers, the integers, or the reals, where most of 
you have been told to live for all of your math classes.  In fact, I can’t for the 
life of me understand why school children start their studies with the 
positive integers, ℤ +, which is a terribly complicated thing compared to 𝔹𝔹.  
Maybe you can go back and teach all the young children in your life 
propositional logic, and let them not worry about those nasty integers until 
they are older. 
 
Here are some sets you should know: 
 

𝔹𝔹 = {0,1}  // Booleans. Symbol is uncommon. Also written ℤ2 
ℕ = {0,1,2,3,…}              // The natural numbers.  I always include 0 
ℤ = {…,-2,-1,0,1,2,…}    // The integers 
ℚ = the rational numbers = {a/b: a, b  ∈ ℤ,  b ≠0} 
ℝ = the real numbers 

https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Boolean_algebra
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Just like integers and reals have operations defined on them, like addition 
(+) and multiplication (·), and so do Boolean values. 
 
If P and Q are variables represent Boolean values,  then we define a sort of 
multiplication on them as 
 
P · Q    -- lots of alternative notations:  P ∧ Q      P and Q    P AND Q    PQ  
                                                        P && Q    
What does it mean?? 
 
P    Q     |     P ∧ Q       
---------------------- 
F     F              F 
F     T              F                     A truth table 
T     F              F 
T     T             T 
 
I’m using infix notation, but don’t let that confuse you as to the nature of 
the thing: a function from AND: 𝔹𝔹 × 𝔹𝔹 → 𝔹𝔹.    We could just as well have 
used the more familiar prefix notation for functions,  like AND(P,Q) 
 
To make a truth table you really need to know how to count in binary. 
Do you all know?     0, 1,  10, 11, 100, 101, …    
Or, with leading zero, then, for example, 000, 001, 010, 011, 100, 101, 
110, 111.  Everybody follows this convention; please don’t write a truth 
table any other way. 
 
Similarly, for OR, with it’s various notations 
 
P ∨ Q       P  or  Q       P OR Q             P || Q 
 
P    Q     |     P ∨ Q       
---------------------- 
F     F              F 
F     T              T 
T     F              T 
T     T              T 



3 
 

 
(As an aside, why do our truth table rows in this order?  Practice counting in 
binary.   0, 1, 10, 11, 100, 101, 110, 111, 1000, …) 
 
We need at least one more operator, a unary operator NOT 
                                                                       _ 
¬P          not  P         NOT P           !P          P 
 
P       |     ¬ P        
---------------------- 
F                T 
T                F 
 
 
We can put them together and make longer formulas 
     P and not(Q)    or   not(P) and Q  
 
That’s actually an interesting function, we call it XOR: 
         P xor Q      P ⊕ Q        P + Q  
 
P    Q     |     P ⊕ Q       
---------------------- 
F     F              F 
F     T              T 
T     F              T 
T     T              F 
 
Here’s another functionality that’s very useful: implies.  P IMPLIES Q, or  
 
P    Q     |     P → Q       
---------------------- 
F     F              T 
F     T              T 
T     F              F 
T     T              T 
 
 
And yet another.    Biconditional:    P ↔ Q        P IFF Q    P iff Q   P ≡ Q 
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P    Q     |     P ↔ Q       
---------------------- 
F     F              T 
F     T              F 
T     F              F 
T     T              T 
 
 
You can either think of operators like ⊕,  → ,  ↔    as “basic” operators of 
sentential logic or, alternatively, you can think of them as “syntactic 
sugar” – convenient short hand for formulas that are “actually” made of ∧, 
∨, ¬  .  (But, for that matter, did we really need all of ∧, ∨, ¬ ?  Exercise: 
write OR  using only AND and NOT; write AND using only OR and NOT. 
In fact, this is more than an exercise: it is a way to introduce DeMorgan’s 
Laws.) 
 
Do a truth table involving more than two variables, like 

if s then x else y  
 
Warm about the use of the word formal having two different meanings: 
rigorous and symbolic.  Now we are going to treat logic formally in the 
second sense: 
 
Definition:    A well-formed formula (WFF) (of propositional logic) over a 
nonempty set of variables 𝒫𝒫 (finite or countably infinite) is:  
(the variables may not contain any of the symbols:  ¬  ∨  ∧  (  )  F  T     ) 
      

• F and T are WFF 
• If X ∈ 𝒫𝒫 then X is a WFF 
• If α and β are WFFs then so are: (¬α),  (α ∨ β), (α ∧  β),          

//  stop here: let’s treat the other binary operators as “syntactic sugar” 
 
(Nothing else is a WFF.) 
 
 

This is an example of a recursive definition. 
Formulas are just strings: sequences of symbols from an alphabet. 
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There are alternative ways to give a recursive definition like the one we just 
gave for a WFF.  Here is how you would write it using a context-free 
grammar: 
 
W  𝒫𝒫 | T | F |  ( W  ∨  W) | (W  ∧  W) |  (  ¬ W) 
𝒫𝒫   L | L  N 
L   P | Q | R  
N  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | NN 
 
The T, F, ∨,  ∧ ,  ¬, P, Q, R, 0, 1, …, 0 are called terminals while the 
W, S, N, 𝒫𝒫 are called nonterminals or variables.     
 
A different notation that captures the same thing is called Backus-Naur 
Form (more frequently called Backus Normal Form, or BNF). It’s nice for 
more explicitly distinguishing terminals and nonterminals.  
 
<wff> ::=  <prop-symbol> | “T” | “F” |  “(“  <wff> “ ∨”  <wff>) |  
                    “(“ <wff>  “∧”  wff “)”    |  “(  ¬ “  <wff>  “)” 
<prop-symbol> ::-  <letter>  | <letter> <number> 
<letter>  ::=  “P” | “Q” | “R”  
<number>  “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9” |  
                        <number> <number> 
 
 
Def:  A truth assignment t over a set 𝒫𝒫  is a map t:  𝒫𝒫  → 𝔹𝔹. 
 
A t.a. is also called a model. 
 
A t.a. gives a formula φ whose variables are in 𝒫𝒫 a truth value  in the natural 
way; formally, we extend t to a t.a. on WFFs by asserting that 

t(T)=T 
t(F)=F 
t((α ∨  β)) = t(α) ∨ t(β) 
t((α ∧  β)) = t(α)  ∧ t(β) 
t((¬α)) =¬ t(α) 

Another recursive definition.   In this way we have extended the definition 
of t from o this larger domain of WFFs.  
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Don’t confuse strings of symbols with their semantics (e.g., the wedge on 
the LHS of the third formula has a very different meaning on the RHS; there 
is a big difference between a formal symbol and a logical operation. 
 

In common usage we use a precedence order allows us to omit many 
parenthesis, adopting a convention: 

¬ 
∧ 
∨ 
→  
↔  (or some would put at same level as →) 

and right-to-left within a level (or some would say left-to-right; or some 
would say ill-defined). 
 

     

 
 
 
 

    
 
 
 

Design something, say a majority circuit – returns 1 if a majority of its 
inputs are on.  Do for 3 wires. 
 
How would you do it for 100 gates? –or an addition circuit using a full 
adder 
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Describe Disjunctive Normal Form (DNF). 
Proposition: Each WFF is equivalent to one in DNF. 
Give a proof, and give an upper bound on the number of two-input gates to 
realize any n-input functionality. 
 
Define: a set of operators being logically complete. 
Show that the following sets of operators are logically complete: 
{∧, ∨, ¬}     {∧, ¬} 
 
  ⊼       (write NAND as a wedge with a bar over it). 
  ⊽         (similarly for NOR) 
 

Definitions: 
• A formula φ is satisfiable if some t.a. makes it true: there is a t.a. t such 

that t(φ)=T   
• A set of formula Γ is satisfiable if some t.a. makes all of them true. 
• A formula φ is tautological (or valid) if it is true for every t.a. 
• ⊨ ϕ    means   ϕ is a tautology 
• φ and ψ are (logically) equivalent , φ ≡ ψ , if  φ ↔ ψ  is a tautology  
• Γ ⊨ ϕ     Every t.a. that makes all formula in Γ true makes ϕ true. 
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Proposition: There is an algorithm (=a precisely-describable procedure, 
mechanism, recipe)  
       that, given a WFF of sentential logic, decides 
       - if it is a tautology. 
       - if it is a satisfiable. 
       - if it equivalent to some given, second formula.   
 

Proof: "Truth-table algorithm" 
 
 
Example: 
Contrapositive:          ⊨ (P→Q) ↔ (¬Q → ¬P)     prove 
 
Discuss the inefficiency of the truth-table algorithm. 
 

Remarkable claim: no efficient means are known for any of these problems. 
 
Discuss the difference in meaning between: 
      (P→Q) ↔ (¬Q → ¬P)       // this is a statement, might be true or false 
    ⊨ (P→Q) ↔ (¬Q → ¬P)        // an assertion that it’s always true 
 
 
Some simple tautologies     Velleman, How to Prove It,  p. 21, 23, 47, 49 . 
You can check any of these with a truth table.   
 
Associative:  P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧R     //Mention the similarities to arithmetic 
              P ∨ (Q ∨ R)  ≡   (P ∨ Q) ∨ R      //laws with ∨ corresponding to addition  
                                                                            //and ∧ corresponding to multiplication 
 
De Morgan’s:   ¬ (P ∧Q)    ≡   ¬P ∨ ¬Q          
              ¬ (P ∨ Q)   ≡   ¬P ∧ ¬Q                            
 
Idempotent:   P ∧ P  ≡  P 
                          P ∨ P  ≡ P 
 
Contradiction    P → Q  ≡   ¬P  ∨ Q 
                                 P → Q  ≡   ¬ (P ∧  ¬Q) 
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Formal Proofs    
  
Discuss conventional proofs vs. formal proofs. 
 
I now discuss formal proofs, although what mathematicians – and you – will 
mostly be producing conventional (informal) ones. 
 
Following from Wikipedia, Propositional Calculus.  Following 14 rules 
 

 
 
One of the reasons to have axioms like the list just given is to develop a 
notion of “what is provable"”   We will write Γ ⊢ ϕ  if statement ϕ follows 
from Γ.  Read: ϕ is provable from Γ.     Turnstyle is the name of the 
symbol.   
List of logical symbols: https://en.wikipedia.org/wiki/List_of_logic_symbols 

https://en.wikipedia.org/wiki/List_of_logic_symbols
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Formal proofs are quite different from conventional proofs, but a thesis in 
mathematics is that conventional proofs can be recast as formal ones.  What 
are formal proof? They are syntactic objects in some formalized system. 
There are many choices one has in how to do the formulation, but here is 
what we would typically have: that a formal proof is a sequence of formula:  
ϕ 1, …, ϕ n where each ϕ i  is either 
  1. an assumption or  
  2. an axiom (it appear on a list like Axiom List W) or  
  3.  it follows from a previous set of lines in the proof by one of  
    a number of enumerated rules – indeed we can make do with one rule, 
modes ponens,  

i)  (A → B) 
… 

 j)   A 
 … 

  k)  B                modes ponens   
Example: 
 ⊢ (PQ)(P ∨ R → S)(SQ → U) → U   
 
1.  PQ                 assumption 
2.  P ∨ R → S   assumption  
3.  SQ → U        assumption  
4.  PQ  → P  AND-1 (eliminate conjunction)  
5.  P             modus ponens on (1), (4) 
6.  PQ → Q            AND-2 (eliminate conjunction)  
7.  Q             modus ponens on (1), (6) 
8.  P → P ∨ R         OR-1 (introduce disjunction)  
9.  P ∨ R         modus ponens on (5), (8) 
10.  S               modus ponens on (2) and (9) 
11. S → (Q  → SQ) AND-3 (introduce conjunction) 
12.  Q  → SQ           modus ponens on (10), (11) 
13.  SQ           modus ponens on (7), (12) 
14.  U             modus ponens on (3) and (13) 
 
Therefore 
{PQ,  P ∨ R → S,  SQ → U}  ⊢   U          or 
⊢ (PQ)(P ∨ R → S)(SQ → U) → U      //The given statement is provable 
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     ⊢ ϕ    can derive (prove) ϕ (from the ∅  — no assumptions) 
 Γ ⊢ ϕ  can derive ϕ  from Γ 
Discuss proofs as (1) formal objects; (2) convincing arguments in a 
community.   Mathematicians don’t seem to appreciate the extent to which 
those standards are socially constructed. See: Proofs and Refutations by 
Imre Lakatos.   (Cf: Genesis and Development of a Scientific Fact, by 
Ludwik Fleck, about Euler’s theorem on convect polyhedral: v-e+f=2). 
 
Theorems that we won’t prove in this class. 
 
Soundness:       If   ⊢ ϕ    then        ⊨ ϕ        
(More generally,  Γ ⊢ ϕ   implies    Γ ⊨ ϕ ) 
 
Completeness:    If     ⊨ ϕ      then  ⊢ ϕ      
(More generally,  Γ ⊨ ϕ       implies Γ ⊢ ϕ ) 
 
Compactness:  Let Γ be a set of WFFs.  
          Suppose that every finite subset of Γ is satisfiable. 
          Then Γ is satisfiable. 
 
  (Contrapositive: 
          Let Γ be a set of WFFs.  
          Suppose that Γ is not satisfiable.  
          Then some finite subset of  Γ is already not satisfiable) 
                  
Let’s use this in a fun example: TILING (Dominos) 
                Can you tile the with tiles of specified types 
                (adjacent edges of the same color) 
 
Eg:  
 

 
 
Make an example where the plane is and is not tileable. Indicate that, in 
ecs120, common to prove that the TILING decision question is 
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undecidable.   But not our interest here. We are interested in whether the 
tileability of the plane for a given set of tile types is FALSIFIABLE -- is 
there a proof of untileability? There will be if the following is true: 
   
If the plane is un-tileable for a given set of tiles, it is already un-tileable on 
some finite square of the plane. 
 
Not an obvious claim -- a priori possible that plane is untileable even though 
every finite rectangle in it is tileable. 
 
To prove from compactness:  
 
Introduce a variable  
        P[i,j,k]:     there is a tile of type k at position (i, j ). Infinitely many vars. 
 
Write a Boolean formula to capture 

- At least one tile per square:   for all integers i, j,  
                ∨k  P[i,j,k] 
 

- At most one tile per square:   for all i, j,  
     P[i,j,k] →  P[i,j,k’]          for all  k ≠ k’. 

 
- Horizontal direction is good: for all i and j,     

                   P[i,j,k]  → ( ∨ k' P[i+1,j,k’] )  
       if a tile of type k’ may be put to the right a tile of type k 
 

- Columns are good.   Fall i and j,     P[i,j,k]  → ( ∨ k' P[i,j+1,k’] )  
       if a tile of type k’ may be put above a tile of type k 
 
 Now: connect it to compactness theorem. The set Γ  is all the formulas 
above. If it is unsatisfiable, then some finite subset of Γ0 is unsatisfiable.  Let 
n  be the largest index used by a variable in Γ0. Then the [-n..n] × [-n..n]  
subset of the plane is already untileable.  That is, you can prove to someone 
that the plane is untileable. 
 
     Γ is satisfiable iff every the plane can be tiled with tiles 
                              of the given types. 
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    The plane can be tiled iff every n × n subset of it can be. 
 
In the language you will learn in ecs120, the complement of tiling is 
recursively enumerable  (r.e.) 
 
A gap between Boolean expressions in modern programming languages 
and those in mathematics: 
 
In most modern programming languages, like C, Java, and Python, short 
 
 
''' 
   Short-circuited evaluation in Python 
''' 
 
if (0<1 or 0/0==0): print("Hi") 
if (0/0==0 or 0<1): print("there") 
 
 
Hi 
Traceback (most recent call last): 
  File "main.py", line 6, in <module> 
    if (0/0==0 or 0<1): print("there") 
ZeroDivisionError: division by zero 
 
...Program finished with exit code 0 
 
 
Hmm.  Doesn’t this mean that if we can’t even reason about a program that 
B1 or B2 is the same as B2 or B1, then it’s hard to reason anything 
about real programs, right?   Right!  Reasoning about the behavior is hard 
and requires extreme care. 
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